
Download free eBooks at bookboon.com

Introduction to Soft Computing

44

Evolutionary Computing

3 Evolutionary Computing

Evolutionary Computing is the collective name for a range of problem-solving techniques based on

principles of biological evolution, such as natural selection and genetic inheritance. hese techniques

are being increasingly widely applied to a variety of problems, ranging from practical applications in

industry and commerce to leading-edge scientiic research.

In computer science, evolutionary computation is a subield of artiicial intelligence (more particularly

computational intelligence) that involves combinatorial optimization problems. Evolutionary computation

uses iterative progress, such as growth or development in a population. his population is then selected

in a guided random search using parallel processing to achieve the desired end. Such processes are oten

inspired by biological mechanisms of evolution. As evolution can produce highly optimised processes

and networks, it has many applications in computer science.

Problem solution using evolutionary algorithms is shown in Figure 35 (Pohlheim 2006).

Figure 35: Problem solution using evolutionary algorithms (adapted from http://jpmc.sourceforge.net)

http://jpmc.sourceforge.net
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

45

Evolutionary Computing

3.1 Evolutionary algorithms

Diferent main schools of evolutionary algorithms have been evolved during the last 50 years: genetic

algorithms, mainly developed in the USA by J.H. Holland (Holland 1975), evolutionary strategies,

developed in Germany by I. Rechenberg (Rechenberg 1973) and H.-P. Schwefel (Schwefel 1981), and

evolutionary programming (Fogel, Owens, and Walsh 1966). Each of these constitutes represents a

diferent approach, however, they are inspired by the same principles of natural evolution. A good

introductory survey can be found in (Fogel 1994).

Evolutionary algorithms are stochastic search methods that mimic the metaphor of natural biological

evolution. Evolutionary algorithms operate on a population of potential solutions applying the principle

of survival of the ittest to produce better and better approximations to a solution. At each generation,

a new set of approximations is created by the process of selecting individuals according to their level

of itness in the problem domain and breeding them together using operators borrowed from natural

genetics. his process leads to the evolution of populations of individuals that are better suited to their

environment than the individuals that they were created from, just as in natural adaptation. Evolutionary

algorithms model natural processes, such as selection, recombination, mutation, migration, locality

and neighbourhood. Figure 36 shows the structure of a simple evolutionary algorithm. Evolutionary

algorithms work on populations of individuals instead of single solutions. In this way the search is

performed in a parallel manner.

Figure 36: Structure of a single population evolutionary algorithm (adapted from www.sciencedirect.com)

http://www.sciencedirect.com/science/article/pii/S0020025513000443
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

46

Evolutionary Computing

At the beginning of the computation a number of individuals (the population) are randomly initialized.

he objective function is then evaluated for these individuals. he irst/initial generation is produced.

If the optimization criteria are not met, the creation of a new generation starts. Individuals are selected

according to their itness for the production of ofspring. Parents are recombined to produce ofspring.

All ofspring will be mutated with a certain probability. he itness of the ofspring is then computed.

he ofspring are inserted into the population replacing the parents, producing a new generation. his

cycle is performed until the optimization criteria are reached.

From the above discussion, it can be seen that evolutionary algorithms difer substantially from more

traditional search and optimization methods. he most signiicant diferences are (Pohlheim 2006):

•	 Evolutionary algorithms search a population of points in parallel, not just a single point.

•	 Evolutionary algorithms do not require derivative information or other auxiliary knowledge;

only the objective function and corresponding itness levels inluence the directions of search.

•	 Evolutionary algorithms use probabilistic transition rules, not deterministic ones.

•	 Evolutionary algorithms are generally more straightforward to apply, because no restrictions

for the deinition of the objective function exist.

•	 Evolutionary algorithms can provide a number of potential solutions to a given problem.

he inal choice is let to the user. (hus, in cases where the particular problem does not

have one individual solution, for example a family of pareto-optimal solutions, as in the case

of multi-objective optimization and scheduling problems, then the evolutionary algorithm is

potentially useful for identifying these alternative solutions simultaneously.)

3.1.1 Selection

In selection the ofspring producing individuals are chosen. he irst step is itness assignment. Each

individual in the selection pool receives a reproduction probability depending on the own objective

value and the objective value of all other individuals in the selection pool. his itness is used for the

actual selection step aterwards. hroughout the chapter some terms are used for comparing the diferent

selection schemes. he deinitions of these terms follow (Baker 1987).

selective pressure: probability of the best individual being selected compared to the average probability

of selection of all individuals

bias: absolute diference between an individual’s normalized itness and its expected probability of

reproduction

spread: range of possible values for the number of ofspring of an individual

loss of diversity: proportion of individuals of a population that is not selected during the selection phase

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

47

Evolutionary Computing

selection intensity: expected average itness value of the population ater applying a selection method to

the normalized Gaussian distribution

selection variance: expected variance of the itness distribution of the population ater applying a selection

method to the normalized Gaussian distribution

Roulette wheel selection

he simplest selection scheme is roulette-wheel selection, also called stochastic sampling with replacement

(Baker 1987). his is a stochastic algorithm and involves the following technique: he individuals are

mapped to contiguous segments of a line, such that each individual’s segment is equal in size to its itness.

A random number is generated and the individual whose segment spans the random number is selected.

he process is repeated until the desired number of individuals is obtained (called mating population).

his technique is analogous to a roulette wheel with each slice proportional in size to the itness.

Example

Table 2 shows the selection probability for 11 individuals. Individual 1 is the most it individual and

occupies the largest interval, whereas individual 10 as the second least it individual has the smallest

interval on the line (see Figure 37). Individual 11, the least it interval, has a itness value of 0 and get

no chance for reproduction.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Introduction to Soft Computing

48

Evolutionary Computing

Number of individual 1 2 3 4 5 6 7 8 9 10 11

itness value 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

selection probability 0.18 0.16 0.15 0.13 0.11 0.09 0.07 0.06 0.03 0.02 0.0

Table 2: Selection probability and itness value

Figure 37: Roulette-wheel selection (adapted from http://www.geatbx.com/)

For selecting, the mating population the appropriate number of uniformly distributed random numbers

(uniform distributed between 0.0 and 1.0) is independently generated.

Sample of 6 random numbers: 0.81, 0.32, 0.96, 0.01, 0.65, 0.42.

Figure 37 shows the selection process of the individuals for the example in Table 2 together with the

above sample trials.

Ater selection the mating population consists of the individuals: 1, 2, 3, 5, 6, 9.

he roulette-wheel selection algorithm provides a zero bias but does not guarantee minimum spread.

Stochastic universal sampling

Stochastic universal sampling (Baker 1987) provides zero bias and minimum spread. he individuals

are mapped to contiguous segments of a line, such that each individual’s segment is equal in size to its

itness exactly as in roulette-wheel selection. Here equally spaced pointers are placed over the line as

many as there are individuals to be selected. Consider NPointer the number of individuals to be selected,

then the distance between the pointers are 1/NPointer and the position of the irst pointer is given by a

randomly generated number in the range [0, 1/NPointer].

Example (cont.)

For 6 individuals to be selected, the distance between pointers is 1/6 = 0.167. Figure 38 shows the

selection for the above example.

%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

49

Evolutionary Computing

Sample of 1 random number in the range [0, 0.167]: 0.1.

Figure 38: Stochastic universal sampling (adapted from http://www.geatbx.com/)

Ater selection the mating population consists of the individuals: 1, 2, 3, 4, 6, 8.

Stochastic universal sampling ensures a selection of ofspring which is closer to what is deserved then

roulette wheel selection.

Local selection

In local selection every individual resides inside a constrained environment called the local

neighbourhood. (In the other selection methods the whole population or subpopulation is the selection

pool or neighbourhood.) Individuals interact only with individuals inside this region. he neighbourhood

is deined by the structure in which the population is distributed. he neighbourhood can be seen as

the group of potential mating partners.

he irst step is the selection of the irst half of the mating population uniform at random (or using one

of the other mentioned selection algorithms, for example, stochastic universal sampling or tournament

selection). Now a local neighbourhood is deined for every selected individual. Inside this neighbourhood

the mating partner is selected (best, itness proportional, or uniform at random).

he structure of the neighbourhood can be:

•	 linear

full ring, half ring (see Figure 39)

•	 two-dimensional

full cross, half cross (see Figure 40, let)

full star, half star (see Figure 40, right)

%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

50

Evolutionary Computing

•	 three-dimensional and more complex with any combination of the above structures.

Figure 39: Linear neighbourhood: full and half ring (adapted from http://www.geatbx.com/)

%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Introduction to Soft Computing

51

Evolutionary Computing

Figure 40: Two-dimensional neighbourhood; left: full and half cross, right: full and half star

(adapted from http://www.geatbx.com/)

he distance between possible neighbours together with the structure determines the size of the

neighbourhood. Between individuals of a population an “isolation by distance” exists. he smaller the

neighbourhood, the bigger the isolation distances. However, because of overlapping neighbourhoods,

propagation of new variants takes place. his assures the exchange of information between all individuals.

he size of the neighbourhood determines the speed of propagation of information between the

individuals of a population, thus deciding between rapid propagation and maintenance of a high

diversity/variability in the population. A higher variability is oten desired, thus preventing problems

such as premature convergence to a local minimum. Local selection in a small neighbourhood performed

better than local selection in a bigger neighbourhood. Nevertheless, the interconnection of the whole

population must still be provided. Two-dimensional neighbourhood with structure half star using a

distance of 1 is recommended for local selection. However, if the population is bigger (>100 individuals)

a greater distance and/or another two-dimensional neighbourhood should be used (Pohlheim 2006).

Tournament selection

In tournament selection (Goldberg and Deb 1991) a number Tour of individuals is chosen

randomly from the population and the best individual from this group is selected as parent.

his process is repeated as oten as individuals must be chosen. hese selected parents produce

uniform at random ofspring. he parameter for tournament selection is the tournament size

Tour. Tour takes values ranging from 2 to Nind (number of individuals in population). Table 3 and

Figure 41 show the relation between the tournament size and selection intensity (Blickle 1995).

tournament size 1 2 3 5 10 30

selection intensity 0 0.56 0.85 1.15 1.53 2.04

Table 3: Relation between tournament size and selection intensity

%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

52

Evolutionary Computing

In (Blickle 1995) an analysis of tournament selection can be found.

Selection intensity

Loss of diversity

() 11

1

−
−

−
− −= Tour

Tour

Tour
Turnier TourTourTourLossDiv

(About 50% of the population are lost at tournament size Tour=5).

Selection variance

() ()Tour
TourSelVarTurnier ⋅+≈

328.1186.1ln

918.0

Figure 41: Properties of tournament selection (adapted from http://www.geatbx.com/)

3.1.2 Recombination

Recombination produces new individuals in combining the information contained in two or more parents

(parents – mating population). his is done by combining the variable values of the parents. Depending

on the representation of the variables diferent methods must be used.

he methods for binary valued variables constitute special cases of the discrete recombination. hese

methods can be applied to integer valued and real valued variables as well.

%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

53

Evolutionary Computing

Discrete recombination – All representations

Discrete recombination (Mühlenbein and Schlierkamp-Voosen 1993) performs an exchange of variable

values between individuals. For each position, the parent who contributes its variable to the ofspring is

chosen randomly with equal probability.

() ()

{ } definedneweachfor,randomatuniform1,0

,,,2,11210

iaa

NvariaVaraVarVar

ii

i

P

ii

P

ii

∈

∈−⋅+⋅= L

Discrete recombination generates corners of the hypercube deined by the parents. Figure 42 shows the

geometric efect of discrete recombination.

Example

Consider the following two individuals with 3 variables each (3 dimensions), which will also be used to

illustrate the other types of recombination for real valued variables:

individual 1 12 25 5

individual 2 123 4 34

EXPERIENCE THE POWER OF

FULL ENGAGEMENT…

 RUN FASTER.

 RUN LONGER..

 RUN EASIER…

READ MORE & PRE-ORDER TODAY

WWW.GAITEYE.COM

Challenge the way we run

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Introduction to Soft Computing

54

Evolutionary Computing

For each variable the parent who contributes its variable to the ofspring is chosen randomly with equal

probability:

sample 1 2 2 1

sample 2 1 2 1

Ater recombination the new individuals are created:

ofspring 1 123 4 5

ofspring 2 12 4 5

Discrete recombination can be used with any kind of variables (binary, integer, real or symbols).

Figure 42: Possible positions of the ofspring after discrete recombination (adapted from http://www.geatbx.com/)

Intermediate recombination – Real valued recombination

Intermediate recombination (Mühlenbein and Schlierkamp-Voosen 1993) is a method only applicable to

real variables (and not binary variables). Here, the variable values of the ofspring are chosen somewhere

around and between the variable values of the parents.

Ofspring are produced according to the rule:

where a is a scaling factor chosen uniformly at random over an interval [-d, 1+d] for each variable anew.

%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

55

Evolutionary Computing

he value of the parameter d deines the size of the area for possible ofspring. A value of d = 0 deines

the area for ofspring the same size as the area spanned by the parents. his method is called (standard)

intermediate recombination. Because most variables of the ofspring are not generated on the border of

the possible area, the area for the variables shrinks over the generations. his shrinkage occurs just by

using (standard) intermediate recombination. his efect can be prevented by using a larger value for d.

A value of d = 0.25 ensures (statistically), that the variable area of the ofspring is the same as the variable

area spanned by the variables of the parents. See Figure 43 for a picture of the area of the variable range

of the ofspring deined by the variables of the parents.

Figure 43: Area for variable value of ofspring compared to parents in intermediate recombination

(adapted from http://www.geatbx.com/)

Example

Consider the following two individuals with 3 variables each:

individual1 12 25 5

individual 2 123 4 34

he chosen a for this example are:

sample 1 0.5 1.1 -0.1

sample 2 0.1 0.8 0.5

he new individuals are calculated as:

ofspring 1 67.5 1.9 2.1

ofspring 2 23.1 8.2 19.5

Intermediate recombination is capable of producing any point within a hypercube slightly larger than that

deined by the parents. Figure 44 shows the possible area of ofspring ater intermediate recombination.

%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

56

Evolutionary Computing

Figure 44: Possible area of the ofspring after intermediate recombination (adapted from http://www.geatbx.com/)

Line recombination – Real valued recombination

Line recombination (Mühlenbein and Schlierkamp-Voosen 1993) is similar to intermediate recombination,

except that only one value of a for all variables is used. he same a is used for all variables:

For the value of d the statements given for intermediate recombination are applicable.

%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Introduction to Soft Computing

57

Evolutionary Computing

Example

Consider the following two individuals with 3 variables each:

individual 1 12 25 5

individual 2 123 4 34

he chosen a for this example are:

sample 1 0.5

sample 2 0.1

he new individuals are calculated as:

ofspring 1 67.5 14.5 19.5

ofspring 2 23.1 22.9 7.9

Line recombination can generate any point on the line deined by the parents. Figure 45 shows the

possible positions of the ofspring ater line recombination.

Figure 45: Possible positions of the ofspring after line recombination (adapted from http://www.geatbx.com/)

3.1.3 Binary valued recombination (crossover)

Recombination produces new individuals in combining the information contained in two or more parents

(parents – mating population). his is done by combining the variable values of the parents. Depending

on the representation of the variables diferent methods must be used.

During the recombination of binary variables only parts of the individuals are exchanged between the

individuals. Depending on the number of parts, the individuals are divided before the exchange of

variables (the number of cross points). he number of cross points distinguishes the methods.

%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

58

Evolutionary Computing

Single-point / double point / multi-point crossover

In single-point crossover one crossover position k_[1,2,…,Nvar-1], Nvar: number of variables of an

individual, is selected uniformly at random and the variables exchanged between the individuals about

this point, then two new ofspring are produced. Figure 46 illustrates this process.

Example

Consider the following two individuals with 11 binary variables each:

individual 1 0 1 1 1 0 0 1 1 0 1 0

individual 2 1 0 1 0 1 1 0 0 1 0 1

he chosen crossover positions are:

crossover position: 5

Ater crossover the new individuals are created:

ofspring 1 0 1 1 1 0| 1 0 0 1 0 1

ofspring 2 1 0 1 0 1| 0 1 1 0 1 0

Figure 46: Single-point crossover (adapted from http://www.geatbx.com/)

In double-point crossover two crossover positions are selected uniformly at random and the variables

exchanged between the individuals between these points, then two new ofsprings are produced. Single-

point and double-point crossover are special cases of the general method multi-point crossover.

For multi-point crossover, m crossover positions k
i
_[1,2,…,Nvar-1], i=1:m, Nvar: number of variables

of an individual are chosen at random with no duplicates and sorted into ascending order. hen, the

variables between successive crossover points are exchanged between two parents to produce two new

ofsprings. he section between the irst variable and the irst crossover point is not exchanged between

individuals. Figure 47 illustrates this process.

%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

59

Evolutionary Computing

Example

Consider the following two individuals with 11 binary variables each:

individual 1 0 1 1 1 0 0 1 1 0 1 0

individual 2 1 0 1 0 1 1 0 0 1 0 1

he chosen crossover positions are:

cross pos. (m=3): 2 6 10

Ater crossover the new individuals are created:

ofspring 1 0 1| 1 0 1 1| 0 1 1 1| 1

ofspring 2 1 0| 1 1 0 0| 0 0 1 0| 0

Line recombination can generate any point on the line deined by the parents. Figure 47 shows the

possible positions of the ofspring ater line recombination.

www.sylvania.com

We do not reinvent

the wheel we reinvent

light.
Fascinating lighting offers an ininite spectrum of

possibilities: Innovative technologies and new

markets provide both opportunities and challenges.

An environment in which your expertise is in high

demand. Enjoy the supportive working atmosphere

within our global group and beneit from international

career paths. Implement sustainable ideas in close

cooperation with other specialists and contribute to

inluencing our future. Come and join us in reinventing

light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Introduction to Soft Computing

60

Evolutionary Computing

Figure 47: Multi-point crossover (adapted from http://www.geatbx.com/)

he idea behind multi-point, and indeed many of the variations on the crossover operator, is that parts

of the chromosome representation that contribute most to the performance of a particular individual

may not necessarily be contained in adjacent substrings (Booker 1987). Further, the disruptive nature

of multi-point crossover appears to encourage the exploration of the search space, rather than favouring

the convergence to highly it individuals early in the search, thus making the search more robust (Spears

and De Jong 1991).

Uniform crossover

Single and multi-point crossover deines cross points as places between loci where an individual can

be split. Uniform crossover (Syswerda 1989) generalizes this scheme to make every locus a potential

crossover point. A crossover mask, the same length as the individual structure is created at random and

the parity of the bits in the mask indicate which parent will supply the ofspring with which bits. his

method is identical to discrete recombination.

Example

Consider the following two individuals with 11 binary variables each:

individual 1 0 1 1 1 0 0 1 1 0 1 0

individual 2 1 0 1 0 1 1 0 0 1 0 1

For each variable the parent who contributes its variable to the ofspring is chosen randomly with equal

probability. Here, the ofspring 1 is produced by taking the bit from parent 1 if the corresponding mask

bit is 1 or the bit from parent 2 if the corresponding mask bit is 0. Ofspring 2 is created using the inverse

of the mask, usually.

sample 1 0 1 1 0 0 0 1 1 0 1 0

sample 2 1 0 0 1 1 1 0 0 1 0 1

%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

61

Evolutionary Computing

Ater crossover the new individuals are created:

ofspring 1 1 1 1 0 1 1 1 1 1 1 1

ofspring 2 0 0 1 1 0 0 0 0 0 0 0

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias associated with

the length of the binary representation used and the particular coding for a given parameter set. his

helps to overcome the bias in single-point crossover towards short substrings without requiring precise

understanding of the signiicance of the individual bits in the individuals’ representation. (Spears and

De Jong 1991) demonstrated how uniform crossover may be parametrized by applying a probability

to the swapping of bits. his extra parameter can be used to control the amount of disruption during

recombination without introducing a bias towards the length of the representation used.

3.1.3 Mutation

By mutation individuals are randomly altered. hese variations (mutation steps) are mostly small. hey

will be applied to the variables of the individuals with a low probability (mutation probability or mutation

rate). Normally, ofspring are mutated ater being created by recombination.

Real valued mutation

Mutation of real variables means that randomly created values are added to the variables with a low

probability. hus, the probability of mutating a variable (mutation rate) and the size of the changes for

each mutated variable (mutation step) must be deined.

he probability of mutating a variable is inversely proportional to the number of variables (dimensions).

he more dimensions one individual has, the smaller is the mutation probability. Diferent papers reported

results for the optimal mutation rate. (Mühlenbein and Schlierkamp-Voosen 1993) writes that a mutation

rate of 1/n (n: number of variables of an individual) produced good results for a wide variety of test

functions. It means that per mutation only one variable per individual is changed/mutated. hus, the

mutation rate is independent of the size of the population. Similar results are reported in (Bäck 1993) and

(Bäck 1996) for a binary valued representation. For unimodal functions a mutation rate of 1/n was the

best choice. An increase in the mutation rate at the beginning connected with a decrease in the mutation

rate to 1/n at the end gave only an insigniicant acceleration of the search. he given recommendations

for the mutation rate are only correct for separable functions. However, most real world functions are

not fully separable. For these functions no recommendations for the mutation rate can be given. As long

as nothing else is known, a mutation rate of 1/n is suggested as well.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

62

Evolutionary Computing

he size of the mutation step is usually diicult to choose. he optimal step size depends on the problem

considered and may even vary during the optimization process. It is known, that small steps (small

mutation steps) are oten successful, especially when the individual is already well adapted. However,

larger changes (large mutation steps) can produce good results much quicker. hus, a good mutation

operator should oten produce small step sizes with a high probability and large step sizes with a low

probability.

In (Mühlenbein and Schlierkamp-Voosen 1993) and (Mühlenbein 1994) such an operator is proposed

(mutation operator of the Breeder Genetic Algorithm):

360°
thinking.

© Deloitte & Touche LLP and affiliated entities.Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Introduction to Soft Computing

63

Evolutionary Computing

his mutation algorithm is able to generate most points in the hypercube deined by the variables of

the individual and range of the mutation (the range of mutation is given by the value of the parameter r

and the domain of the variables). Most mutated individuals will be generated near the individual before

mutation. Only some mutated individuals will be far away from the not mutated individual. hat means,

the probability of small step-sizes is greater than that the probability of bigger steps. Figure 48 tries to

give an impression of the mutation results of this mutation operator.

Figure 48: Efect of mutation of real variables in two dimensions (adapted from http://www.geatbx.com/)

he parameter k (mutation precision) deines indirectly the minimal step size possible and the distribution

of mutation steps inside the mutation range. he smallest relative mutation step size is 2-k, the largest

20 = 1. hus, the mutation steps are created inside the area [r, r·2-k] (r: mutation range). With a mutation

precision of k = 16, the smallest mutation step possible is r·2-16. hus, when the variables of an individual

are so close to the optimum, a further improvement is not possible. his can be circumvented by decreasing

the mutation range (restart of the evolutionary run or use of multiple strategies)

Typical values for the parameters of the mutation operator are the following:

mutation precision k: k ∈ {4, 5, …, 20}

mutation range r: r ∈ [0.1, 10-6]

By changing these parameters, very diferent search strategies can be deined.

%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

64

Evolutionary Computing

Binary mutation

For binary valued individuals mutation means the lipping of variable values, because every variable has

only two states. hus, the size of the mutation step is always 1. For every individual the variable value

to change is chosen (mostly uniform at random). Figure 49 shows an example of a binary mutation for

an individual with 11 variables, where variable 4 is mutated.

Figure 49: Individual before and after binary mutation (adapted from http://www.geatbx.com/)

Assuming that the above individual decodes a real number in the bounds [1, 10], the efect of the mutation

depends on the actual coding. Figure 50 shows the diferent numbers of the individual before and ater

mutation for binary/grey and arithmetic/logarithmic coding.

Figure 50: Result of the binary mutation (adapted from http://www.geatbx.com/)

However, there is no longer a reason to decode real variables into binary variables. he advantages of

mutation operators for real variables were shown in some publications, e.g. (Michalewicz 1994) and

(Davis 1991).

%20http://www.atp.ruhr-uni-bochum.de%20
%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

65

Evolutionary Computing

3.2 Genetic algorithms

A genetic algorithm is a type of a searching algorithm. It searches a solution space for an optimal

solution to a problem. he key characteristic of the genetic algorithm is how the searching is done. he

algorithm creates a “population” of possible solutions to the problem and lets them “evolve” over multiple

generations to ind better and better solutions. he generic form of the genetic algorithm is shown in

Figure 51. he items in bold in the algorithm are deined here.

1. Create a population of random candidate solutions named pop.

2. Until the algorithm termination conditions are met, do the following (each iteration is called a generation):

a) Create an empty population named new-pop.

b) While new-pop is not full, do the following:

1) Select two individuals at random from pop so that individuals which are more it are more likely to

be selected.

2) Cross-over the two individuals to produce two new individuals.

c) Let each individual in new-pop have a random chance to mutate.

d) Replace pop with new-pop.

3. Select the individual from pop with the highest itness as the solution to the problem.

Figure 51: The Genetic Algorithm

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

Download free eBooks at bookboon.com

Introduction to Soft Computing

66

Evolutionary Computing

he population consists of the collection of candidate solutions that we are considering during the course

of the algorithm. Over the generations of the algorithm, new members are “born” into the population,

while others “die” out of the population. A single solution in the population is referred to as an individual.

he itness of an individual is a measure of how “good” is the solution represented by the individual. he

better solution has a higher itness value – obviously, this is dependent on the problem to be solved. he

selection process is analogous to the survival of the ittest in the natural world. Individuals are selected

for “breeding” (or cross-over) based upon their itness values. he crossover occurs by mingling two

solutions together to produce two new individuals. During each generation, there is a small chance for

each individual to mutate.

To use a genetic algorithm, there are several questions that need to be answered:

•	 How is an individual represented?

•	 How is an individual’s itness calculated?

•	 How are individuals selected for breeding?

•	 How are individuals crossed-over?

•	 How are individuals mutated?

•	 What is the size of the population?

•	 What are the “termination conditions”?

Most of these questions have problem speciic answers. he last two, however, can be discussed in a

more general way.

he size of the population is highly variable. he population should be as large as possible. he limiting

factor is, of course, the running time of the algorithm. he larger population means more time consuming

calculation.

he algorithm in Figure 51 has a very vague end point – the meaning of “until the termination conditions

are met” is not immediately obvious. he reason for this is that there is no one way to end the algorithm.

he simplest approach is to run the search for a set number of generations – the longer. Another approach

is to end the algorithm ater a certain number of generations pass with no improvement of the itness of

the best individual in the population. here are other possibilities as well. Since most of the other questions

are dependent upon the search problem, we will look at two example problems that can be solved using

genetic algorithms: inding a mathematical function’s maximum and the travelling salesman problem.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

67

Evolutionary Computing

3.2.1 Function maximization

Example (hede 2004) One application for a genetic algorithm is to ind values for a collection of variables

that will maximize a particular function of those variables. While this type of problem could be solved

otherwise, it is useful as an example of the operation of genetic algorithms. For this example, let’s assume

that we are trying to determine such variables that produce the maximum value for this function:

f(w, x, y, z) = w3 + x2 – y2 – z2 + 2yz – 3wx + wz – xy + 2

his could probably be solved using multivariable calculus, but it is a good simple example of the use of

genetic algorithms. To use the genetic algorithm, we need to answer the questions listed in the previous

section.

How is an individual represented?

What information is needed to have a “solution” of the maximization problem? It is clear that we need

only values: w, x, y, and z. Assuming that we have values for these four variables, we have a candidate

solution for our problem.

he question is how to represent these four values. A simple way to do this is to use an array of four values

(integers or loating point numbers). However, for genetic algorithms it is usually better to have a larger

individual – this way, variations can be done in a more subtle way. he research shows (Holland 1975)

that representation of individuals using bit strings ofers the best performance. We can simply choose

a size in bits for each variable, and then concatenate the four values together into a single bit string.

For example, we will choose to represent each variable as a four-bit integer, making our entire individual

a 16-bit string. hus, an individual such as

1101 0110 0111 1100

represents a solution where w = 13, x = 6, y = 7, and z = 12.

How is an individual’s itness calculated?

Next, we consider how to determine the itness of each individual. here is generally a diferentiation

between the itness and evaluation functions. he evaluation function is a function that returns an absolute

measure of the individual. he itness function is a function that measures the value of the individual

relative to the rest of the population.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

68

Evolutionary Computing

In our example, an obvious evaluation function would be to simply calculate the value of f for the given

variables. For example, assume we have a population of 4 individuals:

1010 1110 1000 0011

0110 1001 1111 0110

0111 0110 1110 1011

0001 0110 1000 0000

he irst individual represents w = 10, x = 14, y = 8, and z = 3, for an f value of 671. he values for the

entire population can be seen in the following table:

Individual w x y z f

1010111010000011 10 14 8 3 671

0110100111110110 6 9 15 6 -43

0111011011101011 7 6 14 11 239

0001011010000000 1 6 8 0 -91

as a

e
s

alna

oro

eal responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

as a

e
s

alna

oro

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work

International opportunities

�ree work placements

al Internationa

or�ree wo

alna

oro

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Introduction to Soft Computing

69

Evolutionary Computing

he itness function can be chosen from many options. For example, the individuals could be listed in

order from the lowest to the highest evaluation function values, and an ordinal ranking applied. OR

he itness function could be the individual’s evaluation value divided by the average evaluation value.

Looking at both of these approaches would give us something like this:

Individual evaluation ordinal averaging

1010111010000011 671 4 2.62

0110100111110110 -43 2 0.19

0111011011101011 239 3 0.81

0001011010000000 -91 1 0.03

he key is that the itness of an individual should represent the value of the individual relative to the

rest of the population, so that the best individual has the highest itness.

How are individuals selected for breeding?

he key to the selection process is that it should be probabilistically weighted so that higher itness

individuals have a higher probability of being selected. Other than these speciications, the method of

selection is open to interpretation.

One possibility is to use the ordinal method for the itness function, then calculate a probability of

selection that is equal to the individual’s itness value divided by the total itness of all the individuals.

In the example above, that would give the irst individual a 40% chance of being selected, the second

a 20% chance, the third a 30% chance, and the fourth a 10% chance. It gives better individuals more

chances to be selected.

A similar approach could be used with the average itness calculation. his would give the irst individual

a 72% chance, the second a 5% chance, the third a 22% chance, and the fourth a 1% chance. his method

makes the probability more dependent on the relative evaluation functions of each individual.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

70

Evolutionary Computing

How are individuals crossed-over?

Once we have selected a pair of individuals, they are “bred” – or in genetic algorithm language, they are

crossed-over. Typically two children are created from each set of parents. One method for performing

the cross-over is described here, but there are other approaches. Two locations are randomly chosen

within the individual. hese deine corresponding substrings in each individual. he substrings are

swapped between two parent individuals, creating two new children. For example, let’s look at our four

individuals again:

1010 1110 1000 0011

0110 1001 1111 0110

0111 0110 1110 1011

0001 0110 1000 0000

Let’s assume that the irst and third individuals are chosen for cross-over. Keep in mind that the selection

process is random. he fourth and fourteenth bits are randomly selected to deine the substring to be

swapped, so the cross-over looks like this:

hus, two new individuals are created. We should create new individuals until we replace the entire

population – in our example, we need one more cross-over operators. Assume that the irst and fourth

individuals are selected this time. Note that an individual may be selected multiple times for breeding,

while other individuals might never be selected. Further assume that the eleventh and sixteenth bits are

randomly selected for the cross-over point. We could apply the second cross-over like this:

he second generation of the population is the following:

1011 0110 1110 1011

0110 1110 1000 0011

1010 1110 1000 0000

0001 0110 1000 0011

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

71

Evolutionary Computing

How are individuals mutated?

Finally, we need to allow individuals to mutate. When using bit strings, the easiest way to implement

the mutation is to allow every single bit in every individual a chance to mutate. his chance should be

very small, since we don’t want to have individuals changing dramatically due to mutation. Setting the

percentage so, that roughly one bit per individual has a chance to change on average.

he mutation will consist of having the bit “lip”: 1 changes to 0 and 0 changes to 1. In our example,

assume that the bold and italicized bits have been chosen for mutation:

1011011011101011 → 1011011011101011

0110111010000011 → 0110101010000011

1010111010000000 → 1010111010010000

0001011010000011 → 0101011010000001

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Introduction to Soft Computing

72

Evolutionary Computing

Wrapping Up

Finally, let’s look at the next population:

Individual w x y z f

1011011011101011 11 6 14 11 1,045

0110101010000011 6 10 8 3 51

1010111010010000 10 14 9 0 571

0101011010000001 5 6 8 1 -19

he average evaluation value is 412, versus an average of 194 for the previous generation. Clearly, this is

a constructed example, but the exciting thing about genetic algorithms is that this sort of improvement

actually does occur in practice.

3.2.2 The travelling salesman problem

Example (hede 2004)

Figure 52: Traveling Salesman Problem (adapted from

http://www.amdusers.com/wiki/tiki-index.php?page=TSP/)

Now let’s look at a less contrived example. Genetic algorithms can be used to solve the traveling salesman

problem (TSP), see Figure 52. For those who are unfamiliar with this problem, it can be stated in two

ways. Informally, there is a traveling salesman who services some number of cities, including his home

city. He needs to travel on a trip such that he starts in his home city, visits every other city exactly once,

and returns home. He wants to set up the trip so that it costs him the least amount of money possible.

he more formal way of stating the problem casts it as a graph problem. Given a weighted graph with N

vertices, ind the lowest cost path from some city v that visits every other node exactly once and returns

to v. For a more thorough discussion of TSP, see (Garey and Johnson 1979).

he problem with TSP is that it is an NP-complete problem. he only known way to ind the answer

is to list every possible route and ind the one with the lowest cost. Since there are a total of (N – 1)!

routes, this quickly becomes intractable for large N. here are approximation algorithms that run in a

reasonable time and produce reasonable results – a genetic algorithm is one of them.

%20http://www.atp.ruhr-uni-bochum.de%20
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

73

Evolutionary Computing

Individual Representation and Fitness

Our irst step is to decide on a representation for an individual candidate solution, or tour. he bit

string model is not very useful because cross-overs and mutations should produce a tour that is invalid.

Remember that every city has to occur in the tour exactly once except the home city.

he only real choice for representing the individual is a vector or array of cities, most likely stored as

integers. he costs of travel between cities should be provided. Using a vector of integers causes some

problems with cross-over and mutation, as we’ll see in the next section.

For example, the following ile deines a TSP with four cities:

0 2 6 3

2 0 9 7

6 9 0 8

3 7 8 0

his ile shows that the cost of travel from city 0 to city 2 is 6, while the cost from city 3 to city 1 is 7.

hen we could represent an individual as a vector of ive cities:

[0 2 1 3 0]

We also need to be careful when calculating itness. he clear choice for the evaluation function is the

cost of the tour. Remember that a good tour is one whose cost is low, so we need to calculate itness so

that a low cost tour – it corresponds to high itness individual (path cost).

Cross-over and Mutation

When performing cross-over and mutation, we need to make sure that we produce valid tours. his

means modifying the cross-over and mutation process. We can still use the same basic idea, however,

choose a substring of the vector of cities at random for cross-over, and choose a single point in the vector

at random for mutation. he mechanics are a bit diferent.

For cross-over, rather than simply swapping the substrings (which could easily result in an invalid tour),

we will instead keep the same cities, but change their order to match the other parent of the cross-over.

For example, assume we have the following two individuals, with the third and sixth cities chosen for

the cross-over substring

7 3 6 1 0 2 5 4

5 4 1 7 2 3 6 0

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

74

Evolutionary Computing

Rather than swapping the cities, which would result in duplications of cities within each tour, we keep

the cities in each tour the same, but we reorder the cities to match their order in the other parent. In the

above example, we would replace the “6 1 0 2” section in the irst parent with “1 2 6 0”, because that is

the order in which those four cities appear in the second parent. Similarly, the “1 7 2 3” section in the

second parent is replaced with “7 3 1 2”, and we get ofspring

7 3 1 2 6 0 5 4

5 4 7 3 1 2 6 0

his allows the concept of the cross-over to remain – that each parent contributes to the construction

of new individuals – while guaranteeing that a valid tour is created.

here are a number of approaches for mutation. he simplest is that whenever a city is chosen as the

location of a mutation, it is simply swapped with the next city in the tour. For example, if the 6 is chosen

for mutation in this tour:

7 3 1 2 6 0 5 4

we would get this tour ater the mutation occurs:

7 3 1 2 0 6 5 4

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Introduction to Soft Computing

75

Evolutionary Computing

Other options for mutation include selecting two cities at random and swapping them, or selecting an

entire substring at random and reversing it, but the concept remains the same – making a relatively

small change to an individual.

3.3 Genetic programming

Genetic programming is much more powerful than genetic algorithms. he output of the genetic

algorithm is a quantity, while the output of the genetic programming is a computer program. In essence,

this is the beginning of computer programs that program themselves. Genetic programming works best

for several types of problems. he irst type is where there is no ideal solution, (for example, a program that

drives a car). here is no one solution to driving a car. Some solutions drive safely at the expense of time,

while others drive fast at a high safety risk. herefore, driving a car consists of making compromises of

speed versus safety, as well as many other variables. In this case genetic programming will ind a solution

that attempts to compromise and be the most eicient solution from a large list of variables. Furthermore,

genetic programming is useful in inding solutions where the variables are constantly changing. In the

previous car example, the program will ind one solution for a smooth concrete highway, while it will

ind a totally diferent solution for a rough unpaved road.

Figure 53: Result of the binary mutation (adapted from http://www.geneticprogramming.com)

%20http://www.geneticprogramming.com
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

76

Evolutionary Computing

he main diference between genetic programming and genetic algorithms is the representation of the

solution. Genetic programming creates computer programs in the scheme computer languages as the

solution. Genetic algorithms create a string of numbers that represent the solution. Genetic programming

uses four steps to solve problems:

1. Generate an initial population of random compositions of the functions and terminals of the

problem (computer programs).

2. Execute each program in the population and assign it a itness value according to how well

it solves the problem.

3. Create a new population of computer programs.

1) Copy the best existing programs

2) Create new computer programs by mutation.

3) Create new computer programs by crossover (sexual reproduction).

4. he best computer program that appeared in any generation, the best-so-far solution, is

designated as the result of genetic programming (Koza 1992).

he lowchart for Genetic Programming (GP) is shown in Figure 53.

he most diicult and most important concept of genetic programming is the itness function. he itness

function determines how well a program is able to solve the problem. It varies greatly from one type

of program to the next. For example, if one were to create a genetic program to set the time of a clock,

the itness function would simply be the amount of time that the clock is wrong. Unfortunately, few

problems have such an easy itness function; most cases require a slight modiication of the problem in

order to ind the itness.

he terminal and function sets are also important components of genetic programming. he terminal and

function sets are the alphabet of the programs to be made. he terminal set consists of the variables and

constants of the programs. Functions are several mathematical functions, such as addition, subtraction,

division, multiplication and other more complex functions.

3.3.1 Operators of genetic programming

Crossover Operator

Two primary operations exist for modifying structures in genetic programming. he most important

one is the crossover operation. In the crossover operation, two solutions are combined to form two new

solutions or ofspring. he parents are chosen from the population by a function of the itness of the

solutions. hree methods exist for selecting the solutions for the crossover operation.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

77

Evolutionary Computing

he irst method uses probability based on the itness of the solution. If ()()tsf i is the itness of the

solution S
i
 and

()()∑== M

i

i tsfF
1

F is the total sum of all the members of the population M. he probability to solution S
i
 is copied to the

next generation is (Koza 1992) then:

()()
()()∑=

=
M

i

i

i
i

tsf

tsf
p

1

Another method for selecting the solution to be copied is tournament selection. Typically the genetic

program chooses two solutions random. he solution with the higher itness will win. his method

simulates biological mating patterns in which, two members of the same sex compete to mate with a third

one of a diferent sex. Finally, the third method is done by rank. In rank selection, selection is based on

the rank, (not the numerical value) of the itness values of the solutions of the population (Koza 1992).

he creation of ofsprings from the crossover operation is accomplished by deleting the crossover fragment

of the irst parent and then inserting the crossover fragment of the second parent. he second ofspring

is produced in a symmetric manner. For example consider the two S-expressions in Figure 54, written

in a modiied scheme programming language and represented in a tree.

“The perfect start

of a successful,

international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be

www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Introduction to Soft Computing

78

Evolutionary Computing

Figure 54: Crossover operation for genetic programming. The bold selections on both parents are swapped to create

the ofspring or children. The child on the right is the parse tree representation for the quadratic equation. (adapted

from http://www.geneticprogramming.com)

An important improvement that genetic programming displays over genetic algorithms is its ability to

create two new solutions from the same solution. In Figure 55 the same parent is used twice to create

two new children. his igure illustrates one of the main advantages of genetic programming over genetic

algorithms. In genetic programming identical parents can yield diferent ofspring, while in genetic

algorithms identical parents would yield identical ofspring. he bold selections indicate the subtrees

to be swapped.

%20http://www.geneticprogramming.com
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

79

Evolutionary Computing

Figure 55: Crossover operation for identical parents. (adapted from http://www.geneticprogramming.com)

Mutation Operator

Mutation is another important feature of genetic programming. Two types of mutations are possible.

In the irst kind a function can only replace a function or a terminal can only replace a terminal. In the

second kind an entire subtree can replace another subtree. Figure 56 explains the concept of mutation.

Genetic programming uses two diferent types of mutations. he top parse tree is the original agent.

he bottom let parse tree illustrates a mutation of a single terminal (2) for another single terminal (a).

It also illustrates a mutation of a single function (-) for another single function (+). he parse tree on

the bottom right illustrates a replacement of a subtree by another subtree.

%20http://www.geneticprogramming.com
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

80

Evolutionary Computing

Figure 56: Mutation operation. (adapted from http://www.geneticprogramming.com)

3.3.2 Applications of genetic programming

Genetic programming can be used for example in the following task solving:

Gun Firing Program. A more complicated example consists of training a genetic program to ire a

gun to hit a moving target. he itness function is the distance that the bullet is of from the target. he

program has to learn to take into account a number of variables, such as the wind velocity, the type of

gun used, the distance to the target, the height of the target, the velocity and acceleration of the target.

his problem represents the type of problem for which genetic programs are best. It is a simple itness

function with a large number of variables.

Water Sprinkler System. Consider a program to control the low of water through a system of water

sprinklers. he itness function is the correct amount of water evenly distributed over the surface.

Unfortunately, there is no one variable encompassing this measurement. hus, the problem must be

modiied to ind a numerical itness. One possible solution is placing water-collecting measuring devices

at certain intervals on the surface. he itness could then be the standard deviation in water level from

all the measuring devices. Another possible itness measure could be the diference between the lowest

measured water level and the ideal amount of water; however, this number would not account in any

way the water marks at other measuring devices, which may not be at the ideal mark.

%20http://www.geneticprogramming.com
http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

81

Evolutionary Computing

Maze Solving Program. If one were to create a program to ind the solution to a maze, irst, the program

would have to be trained with several known mazes. he ideal solution from the start to the inish of

the maze would be described by a path of dots. he itness in this case would be the number of dots the

program is able to ind. In order to prevent the program from wandering around the maze too long, a

time limit is implemented along with the itness function.

3.4 Diferential evolution

Diferential Evolution (DE) is a population-based optimization method that works on real-number-coded

individuals (Storn and Price 1997). DE is quite robust, fast, and efective, with global optimization ability.

It does not require the objective function to be diferentiable, and it works well even with noisy and time-

dependent objective functions. Diferential Evolution is a parallel direct search method which utilizes NP

parameter vectors x
i,G

, i = 0, 1, 2, …, NP-1 as a population for each generation G. NP does not change

during the minimization process. he initial population is chosen randomly if nothing is known about

the system. As a rule, we will assume a uniform probability distribution for all random decisions unless

otherwise stated. In case a preliminary solution is available, the initial population is oten generated by

adding normally distributed random deviations to the nominal solution x
nom,0

. he crucial idea behind

DE is a scheme for generating trial parameter vectors. DE generates new parameter vectors by adding a

weighted diference vector between two population members to a third member. If the resulting vector

yields a lower objective function value than a predetermined population member, the newly generated

vector will replace the vector with which it was compared in the following generation. he comparison

vector can but need not be part of the generation process mentioned above. In addition the best parameter

vector x
best,G

is evaluated for every generation G in order to keep track of the progress that is made during

the minimization process.

Figure 57: Two-dimensional example of an objective function showing its contour lines and the process for

generating v in scheme DE1. The weighted diference vector of two arbitrarily chosen vectors is added to a third

vector to yield the vector v.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

82

Evolutionary Computing

It is extracting distance and direction information from the population to generate random deviations

results in an adaptive scheme with excellent convergence properties. Several variants of DE have been

tried, the two most promising of which are subsequently presented in greater detail.

Scheme DE1

he irst variant of DE works as follows: for each vector x
i,G

, i = 0, 1, 2, … , NP-1, a trial vector v is

generated according to

(),,,, 321 GrGrGr xxFxv −⋅+=
with r

1
, r

2
, r

3
 ∈ [0, NP-1], integer and mutually diferent, and F > 0. Integers r

1
, r

2
 and r

3
 are chosen

randomly from the interval [0, NP-1] and are diferent from the running index i. F is a real and constant

factor which controls the ampliication of the diferential variation ()GrGr xx ,, 32
− . Figure 57 (Storn and

Price 1997) shows a two-dimensional example that illustrates the diferent vectors that are used in DE1.

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education

 ▶ visit www.ligsuniversity.com to

 ind out more!

is currently enrolling in the

Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Introduction to Soft Computing

83

Evolutionary Computing

In order to increase the diversity of the parameter vectors, the vector

()TDuuuu 110 ,,, −=

with () []
 −∈

−++==
1,0otherallfor

1,,1,for

, Djx

Lnnnjv
u

jGi

DDDj

j

is formed where the acute brackets 〈 〉
D
 denote the modulo function with modulus D.

Equations yield a certain sequence of the vector elements of u to be identical to the elements of v, the

other elements of u acquire the original values of x
i,G

. Choosing a subgroup of parameters for mutation

is similar to a process known as crossover in Genetic Algorithms. his idea is illustrated in Figure 58

(Storn and Price 1997) for D = 7, n = 2 and L = 3. he starting index n is a randomly chosen integer

from the interval [0, D-1]. he integer L, which denotes the number of parameters that are going to

be exchanged, is drawn from the interval [1, D]. he algorithm which determines L works according

to the following lines of pseudo code where rand() is supposed to generate a random number ∈ [0,1):

L = 0;

do {

L = L + 1;

}while(rand()< CR) AND (L < D));

Hence the probability Pr(L > = ν) = (CR)ν-1, ν > 0. CR ∈ [0,1] is the crossover probability and constitutes

a control variable for the DE1-scheme. he random decisions for both n and L are made anew for each

trial vector v.

In order to decide whether the new vector u shall become a population member of generation G+1, it

will be compared to x
i,G

. If vector u yields a smaller objective function value, than x
i,G

, x
i,G +1

 is set to u,

otherwise the old value x
i,G

is retained.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

84

Evolutionary Computing

Figure 58: Illustration of the crossover process for D=7, n=2 and L=3.

Scheme DE2

Basically, scheme DE2 works in the same way as DE1 but generates the vector v according to

() (),,,,,, 321 GrGrGiGbestGr xxFxxxv −⋅+−⋅+= λ
introducing an additional control variable λ. he idea behind λ is to provide a means to enhance the

greediness of the scheme by incorporating the current best vector x
best,G

. his feature can be useful for

objective functions where the global minimum is relatively easy to ind. Figure 59 (Storn and Price 1997)

illustrates the vector-generation process deined by the previous equation. he construction of u from

v and x
i,G

 as well as the decision process are identical to DE1.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

85

Evolutionary Computing

Figure 59: Two dimensional example of an objective function showing its contour lines and the process for generating v in

scheme DE2.

Canonical DE

A schematic of the canonical DE strategy is given in Figure 60 (Price 1999). here are essentially ive

sections to the code depicted in igure 60 (Price 1999).

Section 1 describes the input to the heuristic. D is the size of the problem, Gmax is the maximum number

of generations, NP is the total number of solutions, F is the scaling factor of the solution and CR is the

factor for crossover. F and CR together make the internal tuning parameters for the heuristic.

Section 2 in igure 60 outlines the initialization of the heuristic. Each solution x
i,j,G

=0 is created randomly

between the two bounds x(lo) and x(hi). he parameter j represents the index to the values within the

solution and parameter i indexes the solutions within the population. So, to illustrate, x
4,2,0

represents

the fourth value of the second solution at the initial generation.

Ater initialization, the population is subjected to repeated iterations in section 3.

http://bookboon.com/

Download free eBooks at bookboon.com

Introduction to Soft Computing

86

Evolutionary Computing

Section 4 describes the conversion routines of DE. Initially, three random numbers r
1
, r

2
, r

3
 are selected,

unique to each other and to the current indexed solution i in the population in 4.1. Henceforth, a new

index j
rand

 is selected in the solution, j
rand

 points to the value being modiied in the solution as given

in 4.2. In 4.3, two solutions, x
j,r1,G

 and x
j,r2,G

are selected through the index r
1
 and r

2
 and their values

subtracted. his value is then multiplied by F, the predeined scaling factor. his is added to the value

indexed by r
3
. However, this solution is not arbitrarily accepted in the solution. A new random number

is generated, and if this random number is less than the value of CR, then the new value replaces the

old value in the current solution. he itness of the resulting solution, referred to as a perturbed vector

u
j,i,G

, is then compared with the itness of x
j,i,G

. If the itness of u
j,i,G

is greater than the itness of x
j,i,G

, then

x
j,i,G

 is replaced with u
j,i,G

; otherwise, x
j,i,G

 remains in the population as x
j,i,G+1

. Hence, the competition is

only between the new child solution and its parent solution.

he description of some of the commonly used basic DE strategies is presented in Table 4. he description

of all 10 basic strategies is described in (Price 1999) or (Storn. and Price 1997). hese strategies difer in

the way of calculating the perturbed vector u
j,i,G

. Scaling vector F is replaced with a randomly generated

vector F
Rand

 in DELocalToBest strategy and with a randomly generated vector F
NormRand

 with normal

distribution in strategies DEBest1JIter and DERand1DIter.

Figure 60: Canonical DE Schematic.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Introduction to Soft Computing

87

Evolutionary Computing

Table 4: Description of selected DE Strategies

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

